See transition matrix in All languages combined, or Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "transition", "3": "matrix" }, "expansion": "transition + matrix", "name": "compound" } ], "etymology_text": "From transition + matrix.", "forms": [ { "form": "transition matrices", "tags": [ "plural" ] }, { "form": "transition matrixes", "tags": [ "plural" ] } ], "head_templates": [ { "args": { "1": "transition matrices", "2": "+" }, "expansion": "transition matrix (plural transition matrices or transition matrixes)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Hebrew translations", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "glosses": [ "A square matrix whose rows consist of nonnegative real numbers, with each row summing to 1. Used to describe the transitions of a Markov chain; its element in the ith row and jth column describes the probability of moving from state i to state j in one time step." ], "id": "en-transition_matrix-en-noun-SzvR9c0X", "links": [ [ "mathematics", "mathematics" ], [ "square matrix", "square matrix" ], [ "nonnegative", "nonnegative" ], [ "real numbers", "real numbers" ], [ "Markov chain", "Markov chain" ], [ "probability", "probability" ] ], "qualifier": "stochastic processes", "raw_glosses": [ "(mathematics, stochastic processes) A square matrix whose rows consist of nonnegative real numbers, with each row summing to 1. Used to describe the transitions of a Markov chain; its element in the ith row and jth column describes the probability of moving from state i to state j in one time step." ], "related": [ { "word": "left stochastic matrix" } ], "synonyms": [ { "word": "stochastic matrix" }, { "word": "probability matrix" }, { "word": "right stochastic matrix" } ], "topics": [ "mathematics", "sciences" ], "translations": [ { "code": "de", "lang": "German", "sense": "a square matrix", "tags": [ "feminine" ], "word": "Übergangsmatrix" }, { "code": "he", "lang": "Hebrew", "roman": "matrítzat ma'avarím", "sense": "a square matrix", "tags": [ "feminine" ], "word": "מטריצת מעברים" } ], "wikipedia": [ "Stochastic matrix" ] } ], "word": "transition matrix" }
{ "etymology_templates": [ { "args": { "1": "en", "2": "transition", "3": "matrix" }, "expansion": "transition + matrix", "name": "compound" } ], "etymology_text": "From transition + matrix.", "forms": [ { "form": "transition matrices", "tags": [ "plural" ] }, { "form": "transition matrixes", "tags": [ "plural" ] } ], "head_templates": [ { "args": { "1": "transition matrices", "2": "+" }, "expansion": "transition matrix (plural transition matrices or transition matrixes)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "word": "left stochastic matrix" } ], "senses": [ { "categories": [ "English compound terms", "English countable nouns", "English entries with incorrect language header", "English lemmas", "English multiword terms", "English nouns", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with German translations", "Terms with Hebrew translations", "en:Mathematics" ], "glosses": [ "A square matrix whose rows consist of nonnegative real numbers, with each row summing to 1. Used to describe the transitions of a Markov chain; its element in the ith row and jth column describes the probability of moving from state i to state j in one time step." ], "links": [ [ "mathematics", "mathematics" ], [ "square matrix", "square matrix" ], [ "nonnegative", "nonnegative" ], [ "real numbers", "real numbers" ], [ "Markov chain", "Markov chain" ], [ "probability", "probability" ] ], "qualifier": "stochastic processes", "raw_glosses": [ "(mathematics, stochastic processes) A square matrix whose rows consist of nonnegative real numbers, with each row summing to 1. Used to describe the transitions of a Markov chain; its element in the ith row and jth column describes the probability of moving from state i to state j in one time step." ], "topics": [ "mathematics", "sciences" ], "wikipedia": [ "Stochastic matrix" ] } ], "synonyms": [ { "word": "stochastic matrix" }, { "word": "probability matrix" }, { "word": "right stochastic matrix" } ], "translations": [ { "code": "de", "lang": "German", "sense": "a square matrix", "tags": [ "feminine" ], "word": "Übergangsmatrix" }, { "code": "he", "lang": "Hebrew", "roman": "matrítzat ma'avarím", "sense": "a square matrix", "tags": [ "feminine" ], "word": "מטריצת מעברים" } ], "word": "transition matrix" }
Download raw JSONL data for transition matrix meaning in English (2.2kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-01-13 from the enwiktionary dump dated 2025-01-01 using wiktextract (4ba5975 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.